skip to main content


Search for: All records

Creators/Authors contains: "Adhikari, Arjun"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Forest-grassland ecotones are a mosaic of grassland, savanna, and upland forest. As such, landowners may have opportunities to choose to manage their lands for multiple objectives. We estimated the economic returns from managing forest and rangeland in southeastern Oklahoma, USA to produce different combinations of timber, cattle forage, and white-tailed deer (Odocoileus virginianus Zimmermann) browse for a 40-year period. We further conducted a survey to understand landowner perceptions of obstacles to adopting active management that involve timber harvest and prescribed fire. The highest net return was obtained from the treatment with harvested timber that was burned every four years (uneven-aged woodland/forest) because it had the greatest gross return from a combination of timber (46%), cattle forage (42%), and deer browse (11%). The return from this treatment was greater than that for managed for timber only (closed-canopy forest) or prioritizing cattle and deer (savanna). Survey results suggested that landowners were aware of the benefits of active management but that the majority (66%) considered cost a major obstacle in the management of their forest or rangeland. In particular, women forestland owners and older landowners considered cost an obstacle. Our findings advocate integrated timber, cattle, and deer management as the best economic strategy within the forest-grassland ecotone and for targeted outreach and landowner education related to the benefits of active management. 
    more » « less
    Free, publicly-accessible full text available October 1, 2024
  2. White-tailed deer (Odocoileus virginianus) hunting is an important economic activity associated with the management of forests and rangelands in the USA, with over $12.9 billion dollars of related annual expenditures. Reducing tree cover through thinning and prescribed fire both have the potential to increase the quantity and quality of deer forage. We evaluated the long-term impacts of eight different combinations of fire return intervals and tree harvest on forage productivity and protein content of the forage. Based on management regime, study units ranged from savanna to closed-canopy forest. Aboveground net primary production (ANPP) of six functional groups (grass, panicum, forb, legume, woody, sedge) of understory vegetation was measured in October 2019 and 2020 using destructive sampling. Samples for foliar crude protein (CP) concentration were collected in spring, summer, and fall of 2020. Total understory ANPP ranged from 2.9 to 466.3 g m− 2 and was up to 566% greater in savanna systems maintained by frequent fire (return interval of three years or less) than in non-burned forest treatments. Annual burning resulted in ANPP dominated by herbaceous plants composed mostly of firetolerant grasses (e.g., Andropogon gerardii, Schizachyrium scoparium). Longer fire return intervals or no fire resulted in roughly equal ANPP from understory woody and herbaceous species. Crude protein concentrations were up to 45.7% greater in the woodland and forest units than in the savanna units for seven of the eleven species sampled. The greater CP in the forests was most noticeable in the summer when deer needs for quality forage are substantial. Increased protein concentrations of understory species in the forests, but greater ANPP in the savannas indicate that managing for a mix of savanna and woodland could be ideal for balancing forage quantity with increased forage protein. 
    more » « less
    Free, publicly-accessible full text available June 1, 2024
  3. We investigated radial growth of post oak (Quercus stellata Wangenh.) growing in a range of stand structures (forest to savanna) created in 1984 by different harvesting, thinning, and prescribed fire intervals. We related ring width index (RWI) to monthly and seasonal climate variables and time since fire to assess impacts of climate variability and interactions with management on radial growth. The RWI of all treatments was positively correlated to minimum daily temperature the previous September and precipitation late spring and early summer the current year, and negatively correlated to maximum daily temperatures and drought index late spring – early summer. June weather was most strongly correlated in four of five treatments. While stand structure affected absolute diameter growth, the RWI of savanna and forest stands responded similarly to climate variability, and low intensity prescribed fire did not influence RWI. On average, a 100 mm reduction in June precipitation decreased RWI by 7%, a 1 °C increase in previous-year September daily minimum temperature increased RWI by 3.5%, and a 1 °C increase in June maximum daily temperature decreased RWI by 3.7%. Therefore, negative effects of drought and warmer spring and summer temperatures may be reduced by a longer growing season under warmer climate scenarios. However, management did not appear to influence RWI. 
    more » « less
  4. Abstract

    Alpine treelines are expected to shift upward due to recent climate change. However, interpretation of changes in montane systems has been problematic because effects of climate change are frequently confounded with those of land use changes. The eastern Himalaya, particularly Langtang National Park, Central Nepal, has been relatively undisturbed for centuries and thus presents an opportunity for studying climate change impacts on alpine treeline uncontaminated by potential confounding factors.

    We studied two dominant species,Abies spectabilis (AS)andRhododendron campanulatum (RC), above and below the treeline on two mountains. We constructed 13 transects, each spanning up to 400 m in elevation, in which we recorded height and state (dead or alive) of all trees, as well as slope, aspect, canopy density, and measures of anthropogenic and animal disturbance.

    All size classes ofRCplants had lower mortality above treeline than below it, and youngRCplants (<2 m tall) were at higher density above treeline than below.ASshows little evidence of a position change from the historic treeline, with a sudden extreme drop in density above treeline compared to below. Recruitment, as measured by size–class distribution, was greater above treeline than below for both species butASis confined to ~25 m above treeline whereasRCis luxuriantly growing up to 200 m above treeline.

    Synthesis. Evidence suggests that the elevational limits ofRChave shifted upward both because (a) young plants above treeline benefited from facilitation of recruitment by surrounding vegetation, allowing upward expansion of recruitment, and (b) temperature amelioration to mature plants increased adult survival. We predict that the current pure stand ofRCgrowing above treeline will be colonized byASthat will, in turn, outshade and eventually relegateRCto be a minor component of the community, as is the current situation below the treeline.

     
    more » « less